517 lines
19 KiB
C++
517 lines
19 KiB
C++
/**
|
||
* \file main.cpp
|
||
* \brief implementation of the string art algorithm
|
||
* \author GrumpyDeveloper (Sascha Nitsch)
|
||
* \copyright 2023 Sascha Nitsch
|
||
* Licensed under GPL3 or later license
|
||
* https://contentnation.net/en/grumpydevelop/stringart
|
||
* SPDX-FileCopyrightText: 2023 Sascha Nitsch (@grumpydevelop@contentnation.net) https://contentnation.net/en/grumpydevelop
|
||
* SPDX-License-Identifier: GPL-3.0-or-later
|
||
*
|
||
*/
|
||
// compile with
|
||
/// g++ -march=native `Magick++-config --cxxflags --cppflags` -Wall -Werror -o main main.cpp -O3 `Magick++-config --ldflags --libs`
|
||
|
||
#include <math.h>
|
||
#include <Magick++.h>
|
||
#include <string.h>
|
||
#include <sys/time.h>
|
||
#include <vector>
|
||
#include <unordered_map>
|
||
#include "inttypes.h"
|
||
|
||
// which basic nail placement algorithms should be used
|
||
// #define grid
|
||
#define multicircle
|
||
// #define circle
|
||
|
||
class Main {
|
||
private:
|
||
/// last position (number of nail)
|
||
int16_t m_lastPosition = 0;
|
||
|
||
/// definition of a point for our dwarn line vector
|
||
struct Point {
|
||
/// x coordinate
|
||
uint16_t x;
|
||
/// y coordinate
|
||
uint16_t y;
|
||
/// color value
|
||
uint8_t color;
|
||
};
|
||
|
||
/// typedef for a list of points tha make a line
|
||
typedef std::vector<Point> td_pointsInLine;
|
||
|
||
/// the line from src to dst, key = (src << 16) + dst
|
||
typedef std::unordered_map<uint32_t, td_pointsInLine> td_linesFromSource;
|
||
|
||
/// our line storage
|
||
td_linesFromSource m_linesFromSource;
|
||
|
||
/// internal image width
|
||
uint16_t m_imgWidth;
|
||
|
||
/// current state of image
|
||
int16_t* m_currentState;
|
||
|
||
/// desired target state
|
||
uint8_t* m_targetState;
|
||
|
||
/// penalty duplication factor
|
||
float m_duplicateFactor;
|
||
|
||
uint16_t *m_usedpaths;
|
||
|
||
int16_t m_numberOfNails;
|
||
|
||
/// the actual weight function to calculate how off we are to the target
|
||
/// \param value current value
|
||
/// \param target desired target
|
||
/// \retval distance to target
|
||
inline int64_t weightFunction(int16_t value, int16_t target) {
|
||
return (value - target) * (value - target);
|
||
}
|
||
|
||
|
||
|
||
/// swaps two numbers
|
||
/// \param a first number
|
||
/// \param b second number
|
||
inline void swap(int16_t* a , int16_t* b) {
|
||
int16_t temp = *a;
|
||
*a = *b;
|
||
*b = temp;
|
||
}
|
||
|
||
/// return floating part of number
|
||
/// \param x number to process
|
||
/// \retval the data behind the dot
|
||
inline float fPartOfNumber(float x) {
|
||
if (x > 0) {
|
||
return x - floor(x);
|
||
}
|
||
return x - (floor(x) + 1);
|
||
}
|
||
|
||
/// add given point to vector if col is > 0
|
||
/// \param pil pointer to vector
|
||
/// \param x x coordinate
|
||
/// \param y y coordingte
|
||
/// \param col color
|
||
inline void pb(td_pointsInLine* pil, uint16_t x, uint16_t y, uint8_t col) {
|
||
if (col > 0) {
|
||
pil->push_back({x, y, col});
|
||
}
|
||
}
|
||
|
||
/// draw line using Xiaolin Wu’s line algorithm
|
||
/// \param x0 source x coordinate
|
||
/// \param y0 source y coordinate
|
||
/// \param x1 destination x coordinate
|
||
/// \param y1 destination y coordinate
|
||
/// \param color color to draw
|
||
td_pointsInLine drawAALine(int16_t x0 , int16_t y0 , int16_t x1 , int16_t y1, uint8_t color) {
|
||
td_pointsInLine pil;
|
||
bool steep = abs(y1 - y0) > abs(x1 - x0);
|
||
// swap the co-ordinates if slope > 1 or we
|
||
// draw backwards
|
||
if (steep) {
|
||
swap(&x0, &y0);
|
||
swap(&x1, &y1);
|
||
}
|
||
if (x0 > x1) {
|
||
swap(&x0, &x1);
|
||
swap(&y0, &y1);
|
||
}
|
||
|
||
// compute the slope
|
||
float dx = x1 - x0;
|
||
float dy = y1 - y0;
|
||
float gradient = dy / dx;
|
||
if (dx == 0.0) {
|
||
gradient = 1;
|
||
}
|
||
int16_t xpxl1 = x0;
|
||
int16_t xpxl2 = x1;
|
||
float intersectY = y0;
|
||
|
||
// main loop
|
||
if (steep) {
|
||
int16_t x;
|
||
for (x = xpxl1 ; x <= xpxl2 ; ++x) {
|
||
// pixel coverage is determined by fractional
|
||
// part of y co-ordinate
|
||
pb(&pil, static_cast<uint16_t>(intersectY), static_cast<uint16_t>(x), static_cast<uint8_t>(color * (1 - fPartOfNumber(intersectY))));
|
||
if (intersectY >= 1) {
|
||
pb(&pil, static_cast<uint16_t>(intersectY - 1), static_cast<uint16_t>(x), static_cast<uint8_t>(color * fPartOfNumber(intersectY)));
|
||
}
|
||
intersectY += gradient;
|
||
}
|
||
} else {
|
||
int16_t x;
|
||
for (x = xpxl1 ; x <= xpxl2 ; ++x) {
|
||
// pixel coverage is determined by fractional
|
||
// part of y co-ordinate
|
||
pb(&pil, static_cast<uint16_t>(x), static_cast<uint16_t>(intersectY), static_cast<uint8_t>(color * (1 - fPartOfNumber(intersectY))));
|
||
if (intersectY >= 1) {
|
||
pb(&pil, static_cast<uint16_t>(x), static_cast<uint16_t>(intersectY - 1), static_cast<uint8_t>(color * fPartOfNumber(intersectY)));
|
||
}
|
||
intersectY += gradient;
|
||
}
|
||
}
|
||
return pil;
|
||
}
|
||
|
||
float checkLine(int16_t target) {
|
||
/// the diff on current lastPosition -> target
|
||
int64_t testDiff = 0;
|
||
uint16_t src = std::min(m_lastPosition, target);
|
||
uint16_t dst = std::max(m_lastPosition, target);
|
||
td_linesFromSource::const_iterator lttIter = m_linesFromSource.find((src << 16) + dst);
|
||
/*if (lttIter == m_linesFromSource.end()) {
|
||
printf("itt fail %i %i\n", src, dst);
|
||
abort();
|
||
}*/
|
||
// calculate difference to target
|
||
// for each point
|
||
td_pointsInLine::const_iterator pilIter = lttIter->second.begin();
|
||
while (pilIter != lttIter->second.end()) {
|
||
uint16_t x = (*pilIter).x;
|
||
uint16_t y = (*pilIter).y;
|
||
uint8_t sub = (*pilIter).color;
|
||
uint32_t index = y * m_imgWidth + x;
|
||
int16_t cur = m_currentState[index];
|
||
int16_t goal = m_targetState[index];
|
||
// subtract previous error
|
||
testDiff -= weightFunction(cur, goal);
|
||
cur -= sub;
|
||
// add new error
|
||
testDiff += weightFunction(cur, goal);
|
||
++pilIter;
|
||
}
|
||
float duplicatePenalty = (m_duplicateFactor != 1) ?
|
||
pow(m_duplicateFactor, m_usedpaths[std::min(m_lastPosition, target)* m_numberOfNails + std::max(m_lastPosition, target)])
|
||
: 1;
|
||
return testDiff * duplicatePenalty;
|
||
}
|
||
|
||
public:
|
||
/// \brief main function
|
||
/// \param resolutionX X resolution of internal image
|
||
/// \param resolutionY Y resolution of internal image
|
||
/// \param nail vector with nail positions
|
||
/// \param maxIter maximal number of iterations to run
|
||
/// \param duplicateFactor duplication penality factor
|
||
/// \param lineColor line color to use
|
||
int run(const char* imageName, Magick::Image* img, uint16_t resolutionX, uint16_t resolutionY, int16_t requestedNumberOfNails, std::vector<uint32_t> nails, uint16_t maxIter, float duplicateFactor, uint8_t lineColor) {
|
||
m_duplicateFactor = duplicateFactor;
|
||
int16_t numberOfNails = nails.size();
|
||
printf("res: %ix%i nails: %i maxIter: %i duplicatePenalty %.1f color: %i\n", resolutionX, resolutionY, numberOfNails, maxIter, duplicateFactor, lineColor);
|
||
|
||
// for time measurement
|
||
struct timeval tv1, tv2;
|
||
gettimeofday(&tv1, NULL);
|
||
|
||
|
||
for (uint16_t src = 0; src < numberOfNails; ++src) {
|
||
for (uint16_t dst = src + 1; dst < numberOfNails; ++dst) {
|
||
td_pointsInLine pointsInLine = drawAALine(nails[src] >> 16, nails[src] & 0xFFFF, nails[dst] >> 16, nails[dst] & 0xFFFF, lineColor);
|
||
m_linesFromSource.insert(std::make_pair((src << 16) + dst, pointsInLine));
|
||
}
|
||
}
|
||
|
||
uint32_t channels = img->channels();
|
||
m_imgWidth = img->columns();
|
||
uint16_t imgHeight = img->rows();
|
||
|
||
printf("target image %i x %i x %i\n", m_imgWidth, imgHeight, channels);
|
||
MagickCore::Quantum *pixels = img->getPixels(0, 0, m_imgWidth, imgHeight);
|
||
m_targetState = reinterpret_cast<uint8_t*>(malloc(m_imgWidth * imgHeight));
|
||
|
||
if (channels == 1) { // monochrome image
|
||
for (uint32_t i = 0; i < m_imgWidth * imgHeight; ++i) {
|
||
m_targetState[i] = pixels[i] >> 8;
|
||
}
|
||
} else if (channels == 2) { // color + alpha?
|
||
for (uint32_t i = 0; i < m_imgWidth * imgHeight; ++i) {
|
||
m_targetState[i] = pixels[i << 1] >> 8;
|
||
}
|
||
} else { // RGB or RGBA
|
||
for (uint32_t i = 0; i < m_imgWidth * imgHeight; ++i) {
|
||
m_targetState[i] = ((pixels[i*channels] + pixels[i*channels + 1] + pixels[i*channels + 2]) / 3) >> 8;
|
||
}
|
||
}
|
||
#ifdef DEBUGIMG
|
||
FILE* debugfh = fopen("debug.pnm", "wb");
|
||
fprintf(debugfh, "P5\n# debug\n%i %i\n255\n", realWidth, realHeight);
|
||
fwrite(targetState, 1, realWidth * realHeight, debugfh);
|
||
fclose(debugfh);
|
||
#endif
|
||
|
||
// thread path
|
||
std::vector<uint16_t> path;
|
||
// add start position
|
||
path.push_back(0);
|
||
m_numberOfNails = numberOfNails;
|
||
// a lookup of used paths to count repeats
|
||
m_usedpaths = reinterpret_cast<uint16_t*>(malloc(numberOfNails * numberOfNails * sizeof(uint16_t)));
|
||
bzero(m_usedpaths, numberOfNails * numberOfNails * sizeof(uint16_t));
|
||
|
||
/// last thread end position
|
||
m_lastPosition = 0;
|
||
/// storage for the current state (all previous drawn threads)
|
||
m_currentState = reinterpret_cast<int16_t*>(malloc(m_imgWidth * imgHeight * 2));
|
||
/// temp storage to save (current) best version, will be continously updated
|
||
int16_t* bestState = reinterpret_cast<int16_t*>(malloc(m_imgWidth * imgHeight * 2));
|
||
|
||
// clear states
|
||
uint32_t widthXheight = m_imgWidth * imgHeight;
|
||
for (uint32_t i = 0; i < widthXheight; ++i) {
|
||
m_currentState[i] = 255;
|
||
bestState[i] = 255;
|
||
}
|
||
// current iteration
|
||
uint32_t iter = 0;
|
||
// list of used nails with their counter
|
||
uint8_t usedPins[numberOfNails] = {0};
|
||
// number of continous jump tries if we got stuck
|
||
uint16_t jumps = 0;
|
||
/// total diff from currentState to targetState
|
||
int64_t totalDiff = 0;
|
||
|
||
// calculate inital difference
|
||
for (uint32_t i = 0; i < widthXheight; ++i) {
|
||
totalDiff += weightFunction(255, m_targetState[i]);
|
||
}
|
||
printf("start %li\n", totalDiff);
|
||
while ((iter < maxIter) && jumps*2 < numberOfNails) {
|
||
++iter;
|
||
#ifdef SANITYCHECK
|
||
int64_t sanity = 0;
|
||
for (uint32_t Z = 0; Z < widthXheight; ++Z) {
|
||
int16_t cur = currentState[Z];
|
||
int16_t goal = targetState[Z];
|
||
sanity += weightFunction(cur, goal);
|
||
}
|
||
if (sanity != totalDiff) {
|
||
printf("%i: total: %li, sanity: %li, diff: %li\n", iter, totalDiff, sanity, sanity - totalDiff);
|
||
}
|
||
#endif
|
||
/// current best difference
|
||
int64_t bestDiff = INT64_MAX;
|
||
/// compensated diff includes penality when reusing paths
|
||
int64_t compensatedBestDiff = INT64_MAX;
|
||
int16_t bestTarget = -1;
|
||
// printf("source %i\n", m_lastPosition); fflush(stdout);
|
||
for (int16_t target = 0; target < numberOfNails; ++target) {
|
||
if (target == m_lastPosition) continue;
|
||
int64_t diff = checkLine(target);
|
||
if (diff < bestDiff) {
|
||
bestTarget = target;
|
||
bestDiff = diff;
|
||
}
|
||
}
|
||
// printf("bestTarget %i diff %li\n", bestTarget, bestDiff);
|
||
if (bestDiff < 0) {
|
||
// apply current best
|
||
td_linesFromSource::const_iterator lttIter = m_linesFromSource.find((std::min(m_lastPosition, bestTarget) << 16) + std::max(m_lastPosition, bestTarget));
|
||
/*if (lttIter == m_linesFromSource.end()) {
|
||
printf("iter fail %i %i\n", m_lastPosition, bestTarget);
|
||
abort();
|
||
}*/
|
||
td_pointsInLine::const_iterator pilIter = lttIter->second.begin();
|
||
while (pilIter != lttIter->second.end()) {
|
||
uint16_t x = (*pilIter).x;
|
||
uint16_t y = (*pilIter).y;
|
||
int16_t sub = (*pilIter).color;
|
||
uint32_t index = y * m_imgWidth + x;
|
||
int16_t cur = m_currentState[index];
|
||
cur -= sub;
|
||
bestState[index] = cur;
|
||
++pilIter;
|
||
}
|
||
} else {
|
||
// we got worse, jump to random place to continue
|
||
// printf("j %3i %3i -> %3i(%4i, %4i) bestDiff %8li (%li) iter %i path %i\n", jumps, lastPosition, bestTarget, pos[bestTarget] >> 16, pos[bestTarget] & 0xFFFF, realBestDiff, totalDiff - realBestDiff, iter, m_usedpaths[std::min(m_lastPosition, bestTarget)* m_numberOfNails + std::max(m_lastPosition, bestTarget)]]);
|
||
if (jumps) { // undo last jump, was not working anyway
|
||
--usedPins[m_lastPosition];
|
||
path.pop_back();
|
||
}
|
||
// select next target randomly (kind of, intentially producing the same numbers)
|
||
bestTarget = random() % numberOfNails;
|
||
path.push_back(bestTarget);
|
||
m_lastPosition = bestTarget;
|
||
++usedPins[bestTarget];
|
||
++jumps;
|
||
--iter;
|
||
continue;
|
||
}
|
||
/// reset jump counter (faster to always set)
|
||
jumps = 0;
|
||
if (bestTarget < 0) {
|
||
printf("no best\n");
|
||
break;
|
||
}
|
||
// update path map
|
||
++m_usedpaths[std::min(m_lastPosition, bestTarget)* m_numberOfNails + std::max(m_lastPosition, bestTarget)];
|
||
// add new stop
|
||
path.push_back(bestTarget);
|
||
// update used pins
|
||
++usedPins[bestTarget];
|
||
// progress report
|
||
if (iter % 100 == 0) {
|
||
printf("best %4i -> %4i(%4i, %4i) diff %9li (%12li) iter %5i path %i\n", m_lastPosition, bestTarget, nails[bestTarget] >> 16, nails[bestTarget] & 0xFFFF, compensatedBestDiff, totalDiff + bestDiff, iter, m_usedpaths[std::min(m_lastPosition, bestTarget) * m_numberOfNails + std::max(m_lastPosition, bestTarget)]);
|
||
}
|
||
// set new start position
|
||
m_lastPosition = bestTarget;
|
||
// update diff
|
||
totalDiff += bestDiff;
|
||
// update current state from best map
|
||
memcpy(m_currentState, bestState, widthXheight * 2);
|
||
}
|
||
printf("size %li\n", path.size());
|
||
// we are done, create output svg
|
||
FILE* fh = fopen("map.svg", "wb");
|
||
fprintf(fh, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"0 0 %i %i\">\n<rect width=\"%i\" height=\"%i\" fill=\"#ffffff\" />\n<g style=\"fill:none;stroke:#000000;stroke-opacity:%.2f;stroke-width:1\">\n", m_imgWidth, imgHeight, m_imgWidth, imgHeight, lineColor / 255.0);
|
||
uint32_t counter = 0;
|
||
for (uint16_t i : path) {
|
||
if ((counter & 255) == 0) {
|
||
fprintf(fh, "<path d=\"M%i %i", nails[i] >> 16, nails[i] & 0xffff);
|
||
} else {
|
||
fprintf(fh, "L%i %i", nails[i] >> 16, nails[i] & 0xffff);
|
||
}
|
||
if ((counter & 255) == 255) {
|
||
fprintf(fh, "\" />\n");
|
||
}
|
||
++counter;
|
||
}
|
||
if ((counter & 255) != 0) {
|
||
fprintf(fh, "\" />\n");
|
||
}
|
||
gettimeofday(&tv2, NULL);
|
||
float timeNeeded = (tv2.tv_sec - tv1.tv_sec) + (tv2.tv_usec - tv1.tv_usec) / 1000000.0;
|
||
fprintf(fh, "</g>\n");
|
||
fprintf(fh, "<text x=\"30\" y=\"10\" style=\"font-weight:bold;font-size:60px;font-family:'DejaVu Serif'\"><tspan x=\"30\" y=\"70\">%s %i %i</tspan><tspan x=\"70\" y=\"150\"> %i %i %.2f %i</tspan><tspan x=\"30\" y=\"%i\">%i nails, %li paths, %.1f sec</tspan></text>", imageName, resolutionX, resolutionY, requestedNumberOfNails, maxIter, duplicateFactor, lineColor, imgHeight - 30, numberOfNails, path.size(), timeNeeded);
|
||
fprintf(fh, "</svg>");
|
||
fclose(fh);
|
||
// cleanup
|
||
free(m_targetState);
|
||
free(bestState);
|
||
free(m_currentState);
|
||
free(m_usedpaths);
|
||
path.clear();
|
||
m_linesFromSource.clear();
|
||
return 0;
|
||
}
|
||
};
|
||
/// \brief main entry point
|
||
/// \param argc number of command line arguments
|
||
/// \param argv command line arguments
|
||
int main(int argc, char* argv[]) {
|
||
if (argc != 8) {
|
||
printf("usage: %s <image name> <resolution x> <resolution y> <number of nails> <max number of iterations> <penalty for duplicate path usage> <lineColor>\n", argv[0]);
|
||
return 1;
|
||
}
|
||
// copy command line data to easier to use variables
|
||
const char* imageName = argv[1];
|
||
uint16_t resolutionX = atoi(argv[2]);
|
||
uint16_t resolutionY = atoi(argv[3]);
|
||
uint16_t numberOfNails = atoi(argv[4]);
|
||
uint16_t maxIter = atoi(argv[5]);
|
||
float duplicateFactor = atof(argv[6]);
|
||
uint8_t lineColor = atoi(argv[7]);
|
||
|
||
/// nail positions (x << 16) + y
|
||
std::vector<uint32_t> nails;
|
||
|
||
// initialize image magick, load image and resize to target coordinates
|
||
Magick::InitializeMagick(NULL);
|
||
Magick::Image img(imageName);
|
||
if (img.depth() != 8) {
|
||
printf("only 8 bit images supported\n");
|
||
return 1;
|
||
}
|
||
img.sample(Magick::Geometry(resolutionX, resolutionY));
|
||
|
||
// fix potential size differences between requested and delivered size
|
||
uint16_t imgWidth = img.columns();
|
||
uint16_t imgHeight = img.rows();
|
||
|
||
|
||
// position nails
|
||
#ifdef circle
|
||
for (uint16_t i = 0; i < numberOfNails; ++i) {
|
||
float x = sin(2.0 * M_PI * i / numberOfNails) * (imgWidth-1) / 2.0 + imgWidth / 2.0;
|
||
float y = cos(2.0 * M_PI * i / numberOfNails) * (imgHeight-1) / 2.0 + imgHeight / 2.0;
|
||
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
|
||
}
|
||
#endif
|
||
#ifdef multicircle
|
||
uint16_t count = numberOfNails/1.5;
|
||
for (uint16_t i = 0; i < count; ++i) {
|
||
float x = sin(2.0 * M_PI * i / count) * (imgWidth-1) / 2.0 + imgWidth / 2.0;
|
||
float y = cos(2.0 * M_PI * i / count) * (imgHeight-1) / 2.0 + imgHeight / 2.0;
|
||
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
|
||
}
|
||
uint16_t width = imgWidth / 1.2 - 1;
|
||
uint16_t height = imgHeight / 1.2 - 1;
|
||
count = numberOfNails/1.5;
|
||
for (uint16_t i = 0; i < count; ++i) {
|
||
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + imgWidth / 2.0;
|
||
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + imgHeight / 2.0;
|
||
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
|
||
}
|
||
width = imgWidth / 1.5 - 1;
|
||
height = imgHeight / 1.5 - 1;
|
||
count = numberOfNails/2;
|
||
for (uint16_t i = 0; i < count; ++i) {
|
||
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + imgWidth / 2.0;
|
||
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + imgHeight / 2.0;
|
||
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
|
||
}
|
||
width = imgWidth / 2 - 1;
|
||
height = imgHeight / 2 - 1;
|
||
count = numberOfNails/3;
|
||
for (uint16_t i = 0; i < count; ++i) {
|
||
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + imgWidth / 2.0;
|
||
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + imgHeight / 2.0;
|
||
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
|
||
}
|
||
width = imgWidth / 3 - 1;
|
||
height = imgHeight / 3 - 1;
|
||
count = numberOfNails/4;
|
||
for (uint16_t i = 0; i < count; ++i) {
|
||
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + imgWidth / 2.0;
|
||
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + imgHeight / 2.0;
|
||
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
|
||
}
|
||
width = imgWidth / 5 - 1;
|
||
height = imgHeight / 5 - 1;
|
||
count = numberOfNails / 6;
|
||
for (uint16_t i = 0; i < count; ++i) {
|
||
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + imgWidth / 2.0;
|
||
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + imgHeight / 2.0;
|
||
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
|
||
}
|
||
nails.push_back((static_cast<uint32_t>(floor(imgWidth / 2.0)) << 16) + static_cast<uint16_t>(floor(imgHeight / 2.0)));
|
||
#endif
|
||
#ifdef grid
|
||
uint8_t sq_pins = sqrt(numberOfNails);
|
||
float distX = static_cast<float>(imgWidth - 1) / (sq_pins - 1);
|
||
float distY = static_cast<float>(imgHeight - 1) / (sq_pins - 1);
|
||
for (uint16_t y = 0; y < sq_pins; ++y) {
|
||
for (uint16_t x = 0; x < sq_pins; ++x) {
|
||
nails.push_back((static_cast<uint32_t>(floor(distX * x)) << 16) + static_cast<uint16_t>(floor(distY * y)));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
Main m;
|
||
m.run(imageName, &img, resolutionX, resolutionY, numberOfNails, nails, maxIter, duplicateFactor, lineColor);
|
||
|
||
Magick::TerminateMagick();
|
||
|
||
}
|