initial import

This commit is contained in:
Sascha Nitsch 2023-07-31 22:06:22 +02:00
parent 54599e7f93
commit 95c6add2c5
2 changed files with 473 additions and 0 deletions

2
CPPLINT.cfg Normal file
View file

@ -0,0 +1,2 @@
filter=-legal/copyright,-build/include_subdir,-whitespace/line_length
root=.

471
main.cpp Normal file
View file

@ -0,0 +1,471 @@
/**
* \file main.cpp
* \brief implementation of the string art algorithm
* \author GrumpyDeveloper (Sascha Nitsch)
* \copyright 2023 Sascha Nitsch
* Licensed under GPL3 or later license
* https://contentnation.net/en/grumpydevelop/stringart
* SPDX-FileCopyrightText: 2023 Sascha Nitsch (@grumpydevelop@contentnation.net) https://contentnation.net/en/grumpydevelop
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
// compile with
/// g++ -march=native `Magick++-config --cxxflags --cppflags` -Wall -Werror -o main main.cpp -O3 `Magick++-config --ldflags --libs`
#include <math.h>
#include <Magick++.h>
#include <string.h>
#include <sys/time.h>
#include <vector>
#include <unordered_map>
// which basic nail placement algorithms should be used
// #define grid
// #define multicircle
#define circle
/// the actual weight function to calculate how off we are to the target
/// \param value current value
/// \param target desired target
/// \retval distance to target
inline int64_t weightFunction(int16_t value, int16_t target) {
return (value - target) * (value - target);
}
/// definition of a point for our dwarn line vector
struct Point {
/// x coordinate
uint16_t x;
/// y coordinate
uint16_t y;
/// color value
uint8_t color;
};
/// typedef for a list of points tha make a line
typedef std::vector<Point> td_pointsInLine;
/// the line from src to dst, key = (src << 16) + dst
typedef std::unordered_map<uint32_t, td_pointsInLine> td_linesFromSource;
/// swaps two numbers
/// \param a first number
/// \param b second number
inline void swap(int16_t* a , int16_t* b) {
int16_t temp = *a;
*a = *b;
*b = temp;
}
/// return floating part of number
/// \param x number to process
/// \retval the data behind the dot
inline float fPartOfNumber(float x) {
if (x > 0) {
return x - floor(x);
}
return x - (floor(x) + 1);
}
/// add given point to vector if col is > 0
/// \param pil pointer to vector
/// \param x x coordinate
/// \param y y coordingte
/// \param col color
inline void pb(td_pointsInLine* pil, uint16_t x, uint16_t y, uint8_t col) {
if (col > 0) {
pil->push_back({x, y, col});
}
}
/// draw line using Xiaolin Wus line algorithm
/// \param x0 source x coordinate
/// \param y0 source y coordinate
/// \param x1 destination x coordinate
/// \param y1 destination y coordinate
/// \param color color to draw
td_pointsInLine drawAALine(int16_t x0 , int16_t y0 , int16_t x1 , int16_t y1, uint8_t color) {
td_pointsInLine pil;
bool steep = abs(y1 - y0) > abs(x1 - x0);
// swap the co-ordinates if slope > 1 or we
// draw backwards
if (steep) {
swap(&x0, &y0);
swap(&x1, &y1);
}
if (x0 > x1) {
swap(&x0, &x1);
swap(&y0, &y1);
}
// compute the slope
float dx = x1 - x0;
float dy = y1 - y0;
float gradient = dy / dx;
if (dx == 0.0) {
gradient = 1;
}
int16_t xpxl1 = x0;
int16_t xpxl2 = x1;
float intersectY = y0;
// main loop
if (steep) {
int16_t x;
for (x = xpxl1 ; x <= xpxl2 ; ++x) {
// pixel coverage is determined by fractional
// part of y co-ordinate
pb(&pil, static_cast<uint16_t>(intersectY), static_cast<uint16_t>(x), static_cast<uint8_t>(color * (1 - fPartOfNumber(intersectY))));
if (intersectY >= 1) {
pb(&pil, static_cast<uint16_t>(intersectY - 1), static_cast<uint16_t>(x), static_cast<uint8_t>(color * fPartOfNumber(intersectY)));
}
intersectY += gradient;
}
} else {
int16_t x;
for (x = xpxl1 ; x <= xpxl2 ; ++x) {
// pixel coverage is determined by fractional
// part of y co-ordinate
pb(&pil, static_cast<uint16_t>(x), static_cast<uint16_t>(intersectY), static_cast<uint8_t>(color * (1 - fPartOfNumber(intersectY))));
if (intersectY >= 1) {
pb(&pil, static_cast<uint16_t>(x), static_cast<uint16_t>(intersectY - 1), static_cast<uint8_t>(color * fPartOfNumber(intersectY)));
}
intersectY += gradient;
}
}
return pil;
}
/// \brief main entry point
/// \param argc number of command line arguments
/// \param argv command line arguments
int main(int argc, char* argv[]) {
if (argc != 8) {
printf("usage: %s <image name> <resolution x> <resolution y> <number of nails> <max number of iterations> <penalty for duplicate path usage> <lineColor>\n", argv[0]);
return 1;
}
// copy command line data to easier to use variables
const char* imageName = argv[1];
uint16_t resolutionX = atoi(argv[2]);
uint16_t resolutionY = atoi(argv[3]);
uint16_t numberOfNails = atoi(argv[4]);
uint16_t maxIter = atoi(argv[5]);
float duplicateFactor = atof(argv[6]);
uint8_t lineColor = atoi(argv[7]);
// our line storage
td_linesFromSource linesFromSource;
printf("res: %ix%i nails: %i maxIter: %i duplicatePenalty %.1f color: %i\n", resolutionX, resolutionY, numberOfNails, maxIter, duplicateFactor, lineColor);
/// nail positions (x << 16) + y
std::vector<uint32_t> nails;
// for time measurement
struct timeval tv1, tv2;
gettimeofday(&tv1, NULL);
// initialize image magick, load image and resize to target coordinates
Magick::InitializeMagick(NULL);
Magick::Image img(imageName);
if (img.depth() != 8) {
printf("only 8 bit images supported\n");
return 1;
}
img.sample(Magick::Geometry(resolutionX, resolutionY));
// fix potential size differences between requested and delivered size
uint16_t realWidth = img.columns();
uint16_t realHeight = img.rows();
// position nails
#ifdef circle
for (uint16_t i = 0; i < numberOfNails; ++i) {
float x = sin(2.0 * M_PI * i / numberOfNails) * (realWidth-1) / 2.0 + realWidth / 2.0;
float y = cos(2.0 * M_PI * i / numberOfNails) * (realHeight-1) / 2.0 + realHeight / 2.0;
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
}
#endif
#ifdef multicircle
uint16_t count = numberOfNails/1.5;
for (uint16_t i = 0; i < count; ++i) {
float x = sin(2.0 * M_PI * i / count) * (realWidth-1) / 2.0 + realWidth / 2.0;
float y = cos(2.0 * M_PI * i / count) * (realHeight-1) / 2.0 + realHeight / 2.0;
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
}
uint16_t width = realWidth/1.2 -1;
uint16_t height = realHeight/1.2 -1;
count = numberOfNails/1.5;
for (uint16_t i = 0; i < count; ++i) {
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + realWidth / 2.0;
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + realHeight / 2.0;
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
}
width = realWidth/1.5 -1;
height = realHeight/1.5 -1;
count = numberOfNails/2;
for (uint16_t i = 0; i < count; ++i) {
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + realWidth / 2.0;
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + realHeight / 2.0;
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
}
width = realWidth/2 -1;
height = realHeight/2 -1;
count = numberOfNails/3;
for (uint16_t i = 0; i < count; ++i) {
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + realWidth / 2.0;
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + realHeight / 2.0;
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
}
width = realWidth/3 -1;
height = realHeight/3 -1;
count = numberOfNails/4;
for (uint16_t i = 0; i < count; ++i) {
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + realWidth / 2.0;
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + realHeight / 2.0;
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
}
width = realWidth/5 -1;
height = realHeight/5 -1;
count = numberOfNails/6;
for (uint16_t i = 0; i < count; ++i) {
float x = sin(2.0 * M_PI * i / count) * (width-1) / 2.0 + realWidth / 2.0;
float y = cos(2.0 * M_PI * i / count) * (height-1) / 2.0 + realHeight / 2.0;
nails.push_back((static_cast<uint32_t>(floor(x)) << 16) + static_cast<uint16_t>(floor(y)));
}
nails.push_back((static_cast<uint32_t>(floor(realWidth / 2.0)) << 16) + static_cast<uint16_t>(floor(realHeight / 2.0)));
#endif
#ifdef grid
uint8_t sq_pins = sqrt(numberOfNails);
float distX = static_cast<float>(realWidth - 1) / (sq_pins - 1);
float distY = static_cast<float>(realHeight - 1) / (sq_pins - 1);
for (uint16_t y = 0; y < sq_pins; ++y) {
for (uint16_t x = 0; x < sq_pins; ++x) {
nails.push_back((static_cast<uint32_t>(floor(distX * x)) << 16) + static_cast<uint16_t>(floor(distY * y)));
}
}
#endif
// number of nails might have been changed above or loaded (in the future)
numberOfNails = nails.size();
printf("num %i\n", numberOfNails);
for (uint16_t src = 0; src < numberOfNails; ++src) {
for (uint16_t dst = src + 1; dst < numberOfNails; ++dst) {
td_pointsInLine pointsInLine = drawAALine(nails[src] >> 16, nails[src] & 0xFFFF, nails[dst] >> 16, nails[dst] & 0xFFFF, lineColor);
linesFromSource.insert(std::make_pair((src << 16) + dst, pointsInLine));
}
}
uint32_t channels = img.channels();
printf("target image %i x %i x %i\n", realWidth, realHeight, channels);
MagickCore::Quantum *pixels = img.getPixels(0, 0, realWidth, realHeight);
uint8_t* targetState = reinterpret_cast<uint8_t*>(malloc(realWidth * realHeight));
if (channels == 1) { // monochrome image
for (uint32_t i = 0; i < realWidth * realHeight; ++i) {
targetState[i] = pixels[i] >> 8;
}
} else if (channels == 2) { // color + alpha?
for (uint32_t i = 0; i < realWidth * realHeight; ++i) {
targetState[i] = pixels[i << 1] >> 8;
}
} else { // RGB or RGBA
for (uint32_t i = 0; i < realWidth * realHeight; ++i) {
targetState[i] = ((pixels[i*channels] + pixels[i*channels + 1] + pixels[i*channels + 2]) / 3) >> 8;
}
}
#ifdef DEBUGIMG
FILE* debugfh = fopen("debug.pnm", "wb");
fprintf(debugfh, "P5\n# debug\n%i %i\n255\n", realWidth, realHeight);
fwrite(targetState, 1, realWidth * realHeight, debugfh);
fclose(debugfh);
#endif
// thread path
std::vector<uint16_t> path;
// add start position
path.push_back(0);
// a lookup of used paths to count repeats
uint16_t usedpaths[numberOfNails][numberOfNails];
bzero(usedpaths, numberOfNails * numberOfNails * 2);
/// last thread end position
int16_t lastPosition = 0;
/// storage for the current state (all previous drawn threads)
int16_t* currentState = reinterpret_cast<int16_t*>(malloc(realWidth * realHeight * 2));
/// temp storage to save (current) best version, will be continously updated
int16_t* bestState = reinterpret_cast<int16_t*>(malloc(realWidth * realHeight * 2));
// clear states
uint32_t widthXheight = realWidth * realHeight;
for (uint32_t i = 0; i < widthXheight; ++i) {
currentState[i] = 255;
bestState[i] = 255;
}
// current iteration
uint32_t iter = 0;
// list of used nails with their counter
uint8_t usedPins[numberOfNails] = {0};
// number of continous jump tries if we got stuck
uint16_t jumps = 0;
/// total diff from currentState to targetState
int64_t totalDiff = 0;
// calculate inital difference
for (uint32_t i = 0; i < widthXheight; ++i) {
totalDiff += weightFunction(255, targetState[i]);
}
printf("start %li\n", totalDiff);
while ((iter < maxIter) && jumps*2 < numberOfNails) {
++iter;
#ifdef SANITYCHECK
int64_t sanity = 0;
for (uint32_t Z = 0; Z < widthXheight; ++Z) {
int16_t cur = currentState[Z];
int16_t goal = targetState[Z];
sanity += weightFunction(cur, goal);
}
if (sanity != totalDiff) {
printf("%i: total: %li, sanity: %li, diff: %li\n", iter, totalDiff, sanity, sanity - totalDiff);
}
#endif
/// current best difference
int64_t realBestDiff = INT64_MAX;
/// compensated diff includes penality when reusing paths
int64_t compensatedBestDiff = INT64_MAX;
int16_t bestTarget = -1;
// printf("source %i\n", lastPosition); fflush(stdout);
for (int16_t target = 0; target < numberOfNails; ++target) {
if (target == lastPosition) continue;
/// the diff on current lastPosition -> target
int64_t testDiff = 0;
uint16_t src = std::min(lastPosition, target);
uint16_t dst = std::max(lastPosition, target);
td_linesFromSource::const_iterator lttIter = linesFromSource.find((src << 16) + dst);
// calculate difference to target
// for each point
td_pointsInLine::const_iterator pilIter = lttIter->second.begin();
while (pilIter != lttIter->second.end()) {
uint16_t x = (*pilIter).x;
uint16_t y = (*pilIter).y;
uint8_t sub = (*pilIter).color;
uint32_t index = y * realWidth + x;
int16_t cur = currentState[index];
int16_t goal = targetState[index];
// subtract previous error
testDiff -= weightFunction(cur, goal);
cur -= sub;
// add new error
testDiff += weightFunction(cur, goal);
++pilIter;
}
float duplicatePenalty = (duplicateFactor != 1) ?
pow(duplicateFactor, usedpaths[std::min(lastPosition, target)][std::max(lastPosition, target)])
: 1;
if ((testDiff / duplicatePenalty) < compensatedBestDiff) {
// printf(" new best %i - %i(%i,%i) %li d %li\n", lastPosition, target, pos[target]>>16, pos[target]&0xffff, testDiff, totalDiff - testDiff);
compensatedBestDiff = testDiff * duplicatePenalty;
realBestDiff = testDiff;
// a new best
if (bestTarget != -1) {
// printf("undo %i:%i\n", lastPosition, bestTarget);
// undo previous best
uint16_t tmpSrc = std::min(lastPosition, bestTarget);
uint16_t tmpDst = std::max(lastPosition, bestTarget);
td_linesFromSource::const_iterator tmpLfsIter = linesFromSource.find((tmpSrc << 16) + tmpDst);
td_pointsInLine::const_iterator pilIter = tmpLfsIter->second.begin();
while (pilIter != tmpLfsIter->second.end()) {
uint16_t x = (*pilIter).x;
uint16_t y = (*pilIter).y;
uint32_t index = y * realWidth + x;
int16_t cur = currentState[index];
bestState[index] = cur;
++pilIter;
}
}
// apply current best
td_pointsInLine::const_iterator pilIter = lttIter->second.begin();
while (pilIter != lttIter->second.end()) {
uint16_t x = (*pilIter).x;
uint16_t y = (*pilIter).y;
int16_t sub = (*pilIter).color;
uint32_t index = y * realWidth + x;
int16_t cur = currentState[index];
cur -= sub;
bestState[index] = cur;
++pilIter;
}
bestTarget = target;
}
}
if (realBestDiff >= 0) {
// we got worse, jump to random place to continue
// printf("j %3i %3i -> %3i(%4i, %4i) bestDiff %8li (%li) iter %i path %i\n", jumps, lastPosition, bestTarget, pos[bestTarget] >> 16, pos[bestTarget] & 0xFFFF, realBestDiff, totalDiff - realBestDiff, iter, usedpaths[std::min(lastPosition, bestTarget)][std::max(lastPosition, bestTarget)]);
if (jumps) { // undo last jump, was not working anyway
--usedPins[lastPosition];
path.pop_back();
}
// select next target randomly (kind of, intentially producing the same numbers)
bestTarget = random() % numberOfNails;
path.push_back(bestTarget);
lastPosition = bestTarget;
++usedPins[bestTarget];
++jumps;
--iter;
// fix bestState, easier to copy over than manually reversing. should only happen a few times anyway
memcpy(bestState, currentState, widthXheight * 2);
continue;
}
/// reset jump counter (faster to always set)
jumps = 0;
if (bestTarget < 0) {
printf("no best\n");
break;
}
// update path map
++usedpaths[std::min(lastPosition, bestTarget)][std::max(lastPosition, bestTarget)];
// add new stop
path.push_back(bestTarget);
// update used pins
++usedPins[bestTarget];
// progress report
if (iter % 100 == 0) {
printf("best %4i -> %4i(%4i, %4i) diff %9li (%12li) iter %5i path %i\n", lastPosition, bestTarget, nails[bestTarget] >> 16, nails[bestTarget] & 0xFFFF, compensatedBestDiff, totalDiff + realBestDiff, iter, usedpaths[std::min(lastPosition, bestTarget)][std::max(lastPosition, bestTarget)]);
}
// set new start position
lastPosition = bestTarget;
// update diff
totalDiff += realBestDiff;
// update current state from best map
memcpy(currentState, bestState, widthXheight * 2);
}
printf("size %li\n", path.size());
// we are done, create output svg
FILE* fh = fopen("map.svg", "wb");
fprintf(fh, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"0 0 %i %i\">\n<rect width=\"%i\" height=\"%i\" fill=\"#ffffff\" />\n<g style=\"fill:none;stroke:#000000;stroke-opacity:%.2f;stroke-width:1\">\n", realWidth, realHeight, realWidth, realHeight, lineColor / 255.0);
uint32_t counter = 0;
for (uint16_t i : path) {
if ((counter & 255) == 0) {
fprintf(fh, "<path d=\"M%i %i", nails[i] >> 16, nails[i] & 0xffff);
} else {
fprintf(fh, "L%i %i", nails[i] >> 16, nails[i] & 0xffff);
}
if ((counter & 255) == 255) {
fprintf(fh, "\" />\n");
}
++counter;
}
if ((counter & 255) != 0) {
fprintf(fh, "\" />\n");
}
gettimeofday(&tv2, NULL);
float timeNeeded = (tv2.tv_sec - tv1.tv_sec) + (tv2.tv_usec - tv1.tv_usec) / 1000000.0;
fprintf(fh, "</g>\n");
fprintf(fh, "<text x=\"30\" y=\"10\" style=\"font-weight:bold;font-size:60px;font-family:'DejaVu Serif'\"><tspan x=\"30\" y=\"70\">%s %s %i %i</tspan><tspan x=\"70\" y=\"150\"> %i %i %.2f %i</tspan><tspan x=\"30\" y=\"%i\">%i nails, %li paths, %.1f sec</tspan></text>", argv[0], imageName, resolutionX, resolutionY, atoi(argv[4]), maxIter, duplicateFactor, lineColor, realHeight - 30, numberOfNails, path.size(), timeNeeded);
fprintf(fh, "</svg>");
fclose(fh);
// cleanup
free(targetState);
free(bestState);
free(currentState);
path.clear();
linesFromSource.clear();
Magick::TerminateMagick();
}